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Chapter 4. Statistical Considerations for N-of-1 Trials

We discuss in this chapter key statistical issues for N-of-1 trials — trials of one patient,
treated multiple times with two or more treatments, usually in a randomized order, with the
design under the control of the patient and his or her clinician — including special features of
their experimental design, data collection strategies and statistical analysis. For simplicity, we
will focus on the two-treatment, block pair design in which patients receive each of two
treatments in every consecutive pair of periods with treatment assignments occurring
separately within each block of two periods, either randomized or in a systematic, balanced
design. Extensions are straightforward to other designs such as K treatments (K > 2) assigned in
blocks of size K, randomization schemes with different sized blocks (e.g., block sizes equal to a
multiple of the number of treatments), or unblocked assignment schemes, requiring no
changes in the fundamental principles we outline. The basic design principles include
randomization and counterbalancing, replication and blocking, the number of crossovers
needed to optimize statistical power and the choice of outcomes of interest to the patient and
clinician. Analyses must contend with the scale of the outcomes (continuous, categorical or
count data), changes over time independent of treatment, carryover of treatment effects from
the one period into the next, (auto)correlation of measurements, premature end of treatment
periods and modes of inference (Bayesian or frequentist). All of these complexities exist within
an experimental environment that is not nearly as carefully regulated as the usual randomized
clinical trials and so require an appreciation of the special difficulties of gathering data in an N-

of-1 trial.
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5.1 Experimental Design

N-of-1 studies are appealing because they allow the patient and clinician to devise an
individualized trial with idiosyncratic treatments and outcomes run in a non-traditional research
setting. As a result, N-of-1 designs may vary substantially and may be quite creative. On the
other hand, they often involve clinicians unfamiliar with the principles and practice of clinical
trials and who may not have access to the resources common in research settings. Because
many N-of-1 trials will be carried out in non-research medical office or outpatient clinic
environments, it is important to ensure that proper experimental standards are maintained
while at the same time allowing designs to remain flexible and easy to implement. One way to
ensure such standards is to establish a centralized service responsible for crucial study tasks
such as providing properly randomized treatment sequences to the patient-clinician pair when
they are designing the trial. We next discuss common clinical crossover trial standards that

continue to apply in N-of-1 studies.

Randomization/Counterbalancing After choosing the identity and duration of the treatments
to be given, the patient and her clinician must be given a sequence of treatments in such a way
that the validity of the experimental process is maintained. The sequence can be either
randomized or generated in a systematic counterbalanced design, such as ABBA 2. In the
standard two-treatment N-of-1 trial, the assighnments are made within blocks of two time
periods. With randomization, the first time period in each block is assigned randomly to one of
the two treatments, say, A; the second time period is then assigned to the other treatment, say,

B. With a counterbalanced design, the assignments alternate between AB and BA, in a
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systematic manner that is expected to minimize possible confounding with time trend. For
example, each two blocks can be assigned as AB (first block) BA (second block), to eliminate
possible confounding with a linear time trend.

An important requirement for a good experimental design is to balance treatment
assignments, especially for potential confounding factors, so that the treatments are compared
fairly. Making assignments in blocks of size two ensures that each patient receives each
treatment with the same frequency at a comparable set of times, to avoid poorly balanced
designs like AABA and AABB.

Randomization and counterbalancing both attempt to balance treatments within and
across blocks. Randomization achieves balance on expectation, when averaged across a large
number of blocks, and/or a large number of N-of-1 trials. For each individual N-of-1 trial, exact
balance might not be achieved. For example, if patient outcomes might be deteriorating
gradually over time inducing a time trend, the ABAB design would not be well-balanced as B is
always delivered after A. The design itself may induce inferior outcomes for B due to the time
trend when the two treatments are actually equivalent. For a four-period trial randomized in
blocks of size two, there is a 50% chance for randomization to yield such an unbalanced design,
either ABAB or BABA (and 50% chance to yield a design that is well-balanced against the linear
time trend, either ABBA or BAAB). Counterbalancing, on the other hand, can be more effective
at achieving exact or nearly exact balance for the potential confounding factor(s) designed
explicitly to be balanced, e.g., the ABBA design achieves exact balance for linear time trend.

While randomization can be less effective than counterbalancing in balancing for known

confounding factor(s), randomization has an important advantage in its ability to balance (on
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average) all potential confounding factors, both known and unknown. Counterbalancing, on
the other hand, can behave poorly if the explicit scheme chosen leads to imbalance with
respect to an unknown confounding factor.

In addition to reducing but perhaps not completely eliminating the risk of bias induced
by time trends, blocked assignment also provides two other important benefits. It minimizes
the consequences of early termination of the trial that might otherwise lead to an unbalanced
number of observations in the two treatment arms. Within-block assignment also reduces the
chances that unknown confounders may bias the estimate of within-patient variation that
would invalidate appropriate statistical inference.

To summarize, we recommend that a blocked scheme for treatment assignment be
used for N-of-1 trials. We also recommend that users make a careful choice between
randomization and counterbalancing. If there is good information on the most important
potential confounding factor (such as the linear time trend), counterbalancing can be more
effective. Otherwise, randomization would be a more robust choice. The end of the section on

Blinding has some further discussion.

Blinding To the extent possible, patients and clinicians should remain blinded to the treatment
assigned, particularly when patient-reported or other subjectively ascertained outcomes are
used. While blinding is desirable in all clinical trials, it may be particularly important with N-of-1
trials because of the individualized crossover nature of the study. Patients may (and probably
will) naturally try to guess which treatment they received in each period. Because they are so

invested in the research and so desirous of a positive outcome, it is natural that their reported
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outcome measures may be subtly and unconsciously (or not so subtly and unconsciously)
affected by knowledge of the treatment received, e.g., in favor of the direction that confirms
any pre-existing expectations they might have (the effect of expectancy). On the other hand,
patients’ self-interest might also drive them to report as objectively as possible, particularly if
they enter the trial without any preconceived preferences, because they themselves will bear
the consequences of a bad treatment decision made because of biased outcome reports.
Potential bias might also ensue from the motivation for the trial if, for example, patients were
compelled to enter an N-of-1 trial to prove that a more expensive treatment was really
indicated and should be reimbursed.

In the absence of pure blinding, other features related to the treatment administration
might influence outcomes, but in such a way that they should actually be incorporated into the
treatment decision if it is reasonable to expect the same effect will sustain beyond the end of
the N-of-1 trial. For example, if the patient prefers the one pill to the other because of its color
or texture during the trial and this effect can be sustained in the future, it is a real effect for this
patient and should be part of the treatment decision. In a parallel group trial where the intent
is to generalize beyond the patients in the trial, such a preference should be considered a bias,
because future patients to be treated according to the findings from the trial might not have
the same preference for the same type of pill. In addition to the potential effect on reported
outcomes, knowledge of treatment identity may lead some to end a treatment period early if
the measured outcomes support the treatment expectation. Even if the treatment assignment

is blinded, superior results in one or more periods may induce patients to ask to unblind the
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trial to see whether their hunches are correct. Such unblinding will stop the trial and may result
in an inconclusive final result.

For blinded N-of-1 trials with treatments assigned in small blocks such as blocks of size
two, there is sometimes a concern that some users (patients and/or clinicians) might learn
during the course of the trial that the second treatment in the block is predetermined by the
first, therefore the outcome for the second treatment might be affected by the effect of
expectancy. When this is an important concern, one could use a block size that is a multiple of
the number of treatments, or randomize the block sizes in different multiples of the number of
treatments. This strategy minimizes the chance for the user to figure out the treatment in any
given period. On the other hand, this strategy may also increase the risk of bias if time trends

are present or dropout occurs.

Replication Because only one patient is involved in an N-of-1 trial, the number of
measurements taken on each individual determines the sample size of the study. This sample
size comprises two components: the number of treatment periods and the number of
measurements taken within each period. For instance, a pain outcome measured daily over six
14-day treatment periods will have 84 observed data points. These repeated measurements
enable estimation of between and within-period variance, crucial for proper statistical
modeling. Larger sample sizes can be achieved by increasing the number of treatment periods,
increasing the length of each period, or increasing the frequency of measurements within each
period. These alternative strategies have different analytic implications because they affect

different components of the study variance. It is important to carefully choose both the number
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of crossover periods and the number of measurements taken per period) to enhance the
efficiency of the study design. More data will improve the precision of the treatment effect
estimate, but the optimal allocation to more treatment periods or more measurements per
period depends upon statistical considerations such as the expected size of each variance
component and its influence on the precision of the effect of interest and the minimum effect
size of interest, as well as on practical considerations related to feasibility and type of
measurement. Such considerations include patients’ inability to record data more than once a
day, lack of measure validity on different time scales, increased likelihood of dropout with
longer trials and the tendency for patients to become less careful to follow treatment protocols
over time. Outcomes with substantial measurement variation such as quality of life measures

will need to be collected more frequently in order to precisely estimate the variance.

Washout Carryover, the tendency for treatment effects to linger beyond the crossover, when
one treatment is stopped and the next one started, threatens the validity of the comparison
between treatments in crossover studies, including N-of-1 trials. While statistical models may
attempt to accommodate carryover, they rely on assumptions about the nature of the
carryover that may be difficult to test or even control. In the extreme, carryover may extend
throughout all or most of the next treatment period, contaminating many of the outcome
measurements.

Inserting a washout period in which no treatment is given between consecutive
treatment periods is the common method to reduce or even eliminate the effect of carryover

by design. The goal of a washout period is to provide time for each patient to return to his
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baseline disease state, unaffected by preceding treatment. Deciding whether to include a
washout period depends on both clinical judgment about the durability of the treatment effect
as well as practical considerations related to satisfaction among end users (patient and
clinician) with the study design.

An important clinical consideration for the washout is to avoid adverse interaction
between the treatment conditions. This is mainly an issue for active control studies, with an
active treatment (the standard treatment) used as the control condition to evaluate the
comparative effectiveness of an alternative treatment. If the two active treatments being
compared are not compatible with each other, it would be necessary to impose a washout
period to eliminate the first agent before starting the second agent.

When adverse interaction can be ruled out, the inclusion of a washout period can be
problematic for active control studies, both in terms of satisfaction for the end users (patient
and clinician), and in terms of clinical ethics. The washout period introduces a third treatment
condition, the absence of either active treatment. It is conceivable that the patient might be
managing the disease condition adequately with her current treatment, and undertakes the N-
of-1 trial to test the possibility that the alternative treatment might be better. It is undesirable,
and perhaps even unethical, for the patient to be forced into a period of no treatment that is
likely to be inferior to the current treatment. The use of washout in such studies might reduce
the willingness for patients to undertake the N-of-1 trial, and increase the chance for early
termination of the trial. The ethical dilemma here is that, when adverse interaction can be ruled

out, there is no obvious clinical rationale to withhold both active treatments from the patient
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during the washout period, other than to make a short term sacrifice in exchange for a better
chance to improve the therapeutic precision at the end of the trial.

Conversely, not using a washout might compromise the validity of the estimated
treatment effect and lead to biased estimates for treatment effects. Therefore users need to
determine whether the likelihood for a substantial bias warrants the drawbacks of the washout.

In some cases, the effect of the washout can be accomplished analytically without
including any period during which treatments are withheld. More specifically, any effect of
carryover can be dealt with analytically by eliminating, discarding or downweighting
observations taken at the beginning of a new treatment period. It is also possible to introduce a
time-to-respond statistical model to include all observations while allowing a carryover effect to
be included in the model as a transient function that drifts towards zero gradually over time as
a smoother method to reduce the influence for potentially contaminated observations early in
the period. This approach can help to maintain the integrity of the trial by reducing the chance
that the patient will drop out and that observations will be contaminated by carryover.

While carryover affects how the treatment effects of the previous treatment might
linger on after the completion of the previous treatment period, another important transition
issue is the onset of the new treatment. Some treatments, such as selective serotonin reuptake
inhibitors (SSRIs) may take awhile to reach full effectiveness. Slow onset provides another
reason to reduce the influence for potentially contaminated data at the beginning of a period; it
introduces a natural washout, particularly if the time for one drug to wear off is no greater than

the time for the next drug to take effect.
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It should be noted that a washout period does not mitigate the problem of slow onset
directly. On the contrary, a washout period further extends the transition between the two
treatments, because the onset for the new treatment does not begin until the end of the
washout period. As an example, assume that treatment A takes three days to washout, and
treatment B takes two days to reach its full effectiveness. If a washout period of three days is
used after a period of treatment A, then treatment B begins on day four and reaches its full
effectiveness on day six. Therefore, a total of five days are lost to the transition between the
two treatments. On the other hand, if a washout period is not used (under the assumption that
there is no adverse interaction between the two treatments), the transition is three days only:
by day three, treatment B has reached its full effectiveness; by day four, the carryover effect for
treatment A has disappeared. Therefore only three, instead of five, days of treatment do not
reflect full treatment effects.

If a washout period is included in the study design, choice of its length needs to be made
carefully, taking into consideration treatment interactions, medical ethics, drug half-lives and
onset efficacy. Longer washout periods decrease the likelihood of carryover, but increase the
length of the study and time spent off treatment, and also delay the onset of the full
effectiveness of the next treatment. Making washout periods too short contaminates treatment
effects and carryover effects, and might result in biased estimates for treatment effects. In
summary, one needs to define treatment periods sufficiently long to manifest an effect, but

short enough to allow enough crossovers within a reasonable total duration for the study.
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Adaptation While a fixed trial design is the norm, adaptive trial designs offer the chance to
modify the design of a trial in progress in order to make it more efficient or to fix problems that
may have arisen . Some adaptations occur naturally, as when a patient and clinician decide to
stop a trial because one treatment appears to be more effective or end a treatment period
early because of an adverse event. It is important in such circumstances that blinding be
maintained if it is already part of the study design. For instance, it would not be proper to
unblind a treatment period in order to stop one treatment, but not the other. Other
adaptations could include extending the length of the trial to more treatment periods if
treatment differences appear to be small or instigating play the winner designs *> where the
treatment that appears to be more effective is given more frequently. Such designs are
generally easier to implement when the data are analyzed using Bayesian methods without
tests of hypothesis whose properties depend on prespecified design plans. If frequentist
inference (i.e., p-values) is used, one needs to use sequential design with explicit stopping rules
so as to protect the overall type | error rate. In some cases, decisions to adapt a design may

arise from experience with similar patients.

Multiple Outcomes The personalized nature of N-of-1 trials and their focus on making a
treatment decision for an individual patient require outcomes to be carefully chosen so as to
reflect the measures of most importance to the patient’s well-being. Often, more than one
outcome is of interest to the patient — perhaps reducing pain and sleeping better — and so the
effect of treatment on both needs to be considered in making the choice of treatment at the

end of the trial. This contrasts with most clinical trials, which often focus on one particular
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average treatment effect in the population. Thus, although almost all clinical trials collect data
on at least several, if not many, outcomes of interest, they typically focus on a primary outcome
and so use statistical methods for a single outcome variable.

A common technique when multiple outcomes are of interest is to form a composite
variable such as MACE in cardiovascular trials, which counts the number of Major Adverse
Cardiac Events (e.g., acute myocardial infarction, ischemic stroke, coronary arterial occlusion
and death), and then analyze it by univariate methods. Composite outcomes are not as popular
in N-of-1 studies because they do not allow the patient or clinician to see the effect on each
distinct outcome separately. Often, the outcomes differ so fundamentally that forming a
composite becomes difficult. Returning to a previous example, how might one combine a pain
scale and the number of nights of good sleep over a fortnight? One could express both as a
percentage of relief compared to a baseline level and then average the two percentages, but
this would assume that each outcome was of equal importance and that both outcome scales
were linear. Alternatively, one could choose one as primary and the other as secondary, but if
the patient were concerned with both then this is unlikely to work well. Another approach
would be to form a weighted composite scale, with weights accommodating patient and
clinician preferences or utilities.

To reflect the patient’s true decision-making state, one might instead analyze each
outcome separately and report a measure of the treatment’s effectiveness for each, letting the
patient and clinician weight them on their own. One could argue, however, that explicitly
specifying the weights up front is more scientific and transparent than having the patient and

clinician implicitly weighting separate outcomes in trying to make a treatment decision. In the
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end, this is a decision problem and it is worth exploring methods of decision analysis to improve
decision making for N-of-1 trials. Both approaches may be useful.

Because the focus is on the immediate decision of which treatment to take, it is not
important to protect against a false positive decision as in the standard test of hypothesis
commonly employed in clinical trials. One is not choosing to report a statistically significant
finding for one outcome among many, so multiple testing is not an issue. Instead, one provides
the decision maker with all the information required to make the decision in a format that

facilitates decision-making.

Multiple Subjects Designs Several publications have described an N-of-1 service in which many
patients are offered the opportunity of carrying out studies. Such services offer several
advantages: economies of scale in research infrastructure, clinicians experienced in N-of-1 trials
and the chance to use information gained from other patients. Multiple N-of-1 trials may be
combined in a common statistical model to both estimate the average treatment effect as well
as improve individual treatment effect estimates by borrowing strength from the information
provided by other similar patients. As more patients accrue, not only does the precision with
which the next patient can be evaluated improve, but also the estimates for previous patients
that might have even finished their studies may change as a result of information gathered on
later patients. Multiple subject designs increase the complexity of sample size choices because
they permit manipulation of the number of subjects as well as the number of measurements on
each. Balancing these two numbers requires knowledge of the relevant within and between-

patient variances °. Ethical considerations may also arise from multiple N-of-1 trials if one
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treatment appears to be working better and clinicians become reluctant to continue

randomizing patients due to lack of equipoise.

5.2 Data Collection

The lack of research infrastructure for the single clinician running an N-of-1 trial may
have a serious detrimental effect on data collection. Typically, research studies initiate
elaborate procedures to ensure that data are collected in a timely, efficient, accurate fashion.
Forms are tested and standardized; research assistants are hired and trained to help collect
data from patients either at patient visits or remotely via mail, telephone or internet
connections; data are checked and rechecked by trial personnel and external monitors; and
missing items are followed up. Many of these options may not be available to the typical
clinician running a trial outside of an established N-of-1 service. Conversely, patients in N-of-1
trials are usually extremely motivated because the trial is being done for them and by them, so
they may be more committed to data collection and therefore less likely to miss visits and fail
to complete forms accurately. Missing items can be particularly costly in an N-of-1 study
because of the small number of observations.

Clinicians undertaking N-of-1 trials must be aware that each trial is unique, with its own
protocol and its own set of outcomes. This multiplicity of designs can complicate data
collection, even if a service is available. Multiple data collection forms may be needed and
personalized user interfaces may be valuable ways to collect data. Reminders are important to

provide and interim feedback can maintain the patient’s enthusiasm.
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5.3 Statistical Models and Analysis

The unique design features of N-of-1 trials, including a multiple period crossover design,
multiple patient-selected outcomes and focus on individual treatment effects, motivate
statistical models for these trials. Data resemble a time series in that they are autocorrelated
measurements on a single experimental unit. Unlike classic time series, however, the
measurements are structured by the randomized design and so statistical models also have
features like those for longitudinal data with a time-varying covariate (the treatment
condition). The main goal is to compare the observations taken under the two treatment
conditions, adjusting for any carryover effects, while accommodating the randomized block
structure.

Constructing such models is difficult, especially when few measurements are taken. A
review of the N-of-1 literature in medicine in fact found that many studies have used no formal
statistical model at all to compare treatments, opting instead for eyeball tests based on a graph
of the data or simple nonparametric tests such as the proportion of paired treatment periods in
which A outperformed B 7. When the data are simple and treatment differences are clear, such
simple methods work well. Graphs are always informative and plots of the measurements
provide good ways to understand the data. But when the number of measurements gets large
or when differences are small, graphs will not be sufficient to properly distinguish the
treatment effects.

The basic data from an N-of-1 design consist of measurements taken over time while on
different treatments. The fundamentals of the statistical analysis can be most easily understood

by focusing on the two treatment design in which treatments are randomized in blocks of size
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two, each treatment appearing once in each block. Each treatment period consists of one or

more measurement times.

Nonparametric Tests The earliest N-of-1 trials in medicine used a simple type of nonparametric
test called the sign test. First, one calculates the difference between treatment A and treatment
B. If the difference is positive (A is better than B), one counts this as a success. A negative
difference counts as a failure. (The choice of which difference is defined to be a success is, of
course, arbitrary). The number of successes, i.e. the number of blocks in which A outperforms
B, is now compared to the number expected if the treatments were the same which is N/2
where N is the number of blocks. Since the number of successes is assumed to follow a
binomial distribution, one calculates the probability of the observed result under the null
hypothesis that the true success probability is 5. For example, if there were three blocked
comparisons and in each A was better than B, the probability would be %:*%*% = 1/8. This is
then a (one-sided) p-value for testing whether A was better than B. This procedure ignores the
actual size of the differences and thus throws away potentially important information. Instead,
one might use the Wilcoxon signed-rank test on the ranked differences.

While these simple nonparametric tests are easy to use, they ignore important features
of the time series data, particularly their autocorrelation, time trends and repeated
measurements within periods. As a consequence, it is usually worth constructing a proper

statistical model that incorporates these features along with an estimation of treatment effect.
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Models for Continuous Outcomes A variety of different models can be constructed when the
outcomes are continuous variables depending on whether they are considered random
measurements within each treatment period or vary systematically with time.

First, consider a model in which time may be indexed within treatment periods inside
blocks. Notationally, let yj represent the outcome measured at time i within treatment period

j within block k while on treatment I:

Model 1: y,,, =+, +7, + 5j(k) tE(w)-

Model 1 assumes a fixed treatment effect ,, random block effects y, ~ N(0,0';),
random period within block effects 5j(k) ~ N(0,0'é) and random within-period errors

)~ N(0,0'z), where the notation N(,LL,O'Z) indicates a normal distribution with mean n

and variance o> The constant term is used to avoid oversaturation of model terms. Usually,
one block is chosen as the reference (e.g., set y; = 0) and period within block effects may be
expressed so that the difference between the first and second period is assumed the same in
each block. This model assumes no time trend and no carryover. The model may be simplified if
observations within one treatment period or block are uncorrelated with those in another. In

that case, the model becomes a simple two mean model with random errors

MOdE/ 2-' yljk[ = y] +gl(/(k)) ’
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A common scenario for this model would occur if each treatment period had only one

observation, perhaps at the end to minimize the possibility of carryover.

Modeling Effects Depending on Time Another class of models pertains to occasions when
outcomes vary systematically with time. Causes for such variation include time trends that
might describe a disease course or calendar effects that arise from seasonal variation in
severity, for instance in asthma patients whose health is affected by hay fever. Measuring such
time effects requires that the study duration and measurement frequency be sufficient to
differentiate the trends from noise. It is easiest to then express the model in terms of the

measurement y; taken at time t. If the trend is linear, we have

Model 3: y, =+ Bt+yX, +¢€,,

in which Sis the slope of the time trend, X; is an indicator for the treatment received at time t, y
is the treatment effect and ¢; are the residual errors possibly correlated over time. Other
calendar effects can be introduced by modifying the time variable. For instance a seasonal
effect could be introduced by adding a dummy variable Z; taking the value one during the
season and zero outside it. When each period has a single measurement, the time variable can
be replaced by an indicator variable for period. If the effect of treatment is expected to vary
with time (e.g., because of higher efficacy during periods of greater disease severity), one can

include a time by treatment interaction effect into the model.
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Autocorrelation Measurements in a time series typically are not independent, exhibiting some
form of autocorrelation that represents the relationship between one measurement and the
next in the series. Such autocorrelation arises from time trends or treatment carryover that
causes individuals to tend to respond more similarly at times that are closer to each other.
Model 3 presents one method of detrending the time series by fitting a model linear in time.
Such detrending often removes substantial amounts of observed autocorrelation, but some
may remain as a consequence of features like carryover or delayed uptake. Carryover occurs
when the effect of a stopped treatment continues into the next period after a new treatment is
introduced. It will cause the response to be greater than it should be, effectually because two
treatments are acting instead of one. Delayed uptake applies if the full effect of a treatment is
not felt at the start of the measurement of the outcome. It will work in the opposite direction,
depressing the response initially. The effect of each, however, is to induce correlation between
consecutive outcome measurements.

Models that adjust for autocorrelation take two main forms. The first, often called an
autoregressive or serial correlation model, expresses the residual error at a given time as a

function of the error at one or more previous times, i.e., € = 0¢, , +u, . In this model, 8 is the

correlation between consecutive errors ¢ and &.;. Additional lagged errors of the form &, can
be added to the model to represent more complex autocorrelation. The second form, called by
some a dynamic model & places the autocorrelation on the outcomes themselves so that the
response at time t is a function of the response at time t-1 (and perhaps earlier times). A
dynamic form for a model with one fixed treatment effect, for instance, would

bey =0y, +yX, +¢, . The dynamic model induces a dependence of the current outcome on
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previous values of the predictors in the model. One can also explicitly introduce this
dependence by introducing lagged predictors. It is important to recognize the different
interpretation of predictors in a dynamic model resulting from the need to condition on the

previous outcome, i.e. g is the treatment effect conditioning on y;.;.

Carryover Carryover is a special type of autocorrelation common to crossover trials. It occurs
when the time between treatment periods is insufficient for the effect of the previous
treatment to end before the next treatment is started. This is common with pharmacological
treatments when the drug continues to metabolize in the body for a period of time after the
patient stops taking it. If not controlled for, carryover may lead to bias in the estimated
treatment effects, with a tendency to magnify observed treatment effects during transitions
from a less effective (but still effective) treatment to a more effective treatment, and
conversely to shrink effects during transitions from a more effective to a less effective
treatment.

Both design and analytic approaches can address carryover. Desighing washout periods
long enough for the prior treatment’s effect to disappear by the beginning of the next
treatment period eliminates any potential correlation across periods. An analytic approach
downweights, disregards or does not collect outcomes at the beginning of a treatment period,
thus creating an analytic washout period °. This analytic approach is also helpful when
treatments take time to reach their full effect and it is desired to account for the reduced effect

at the beginning of the period.
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Zucker *° used an extreme version of this approach in a series of N-of-1 trials for
patients with fiboromyalgia tested on amitryptoline or amitryptoline plus fluoxitene. Treatment
periods were six weeks long and the primary outcome was the score on the patient-reported
Fibromyalgia Impact Questionnaire. Only the report from the end of each treatment period was
analyzed. While this almost certainly eliminated carryover, and in fact autocorrelation, it did
have the drawback of giving only one measurement per treatment period. In some studies,
however, these choices may be unavailable if each treatment period is short or treatment half-
life is very long.

Various approaches to estimating carryover have been proposed. As Senn 11points out,
all rely on restrictive modeling assumptions and are inferior to designing a proper washout
(which also may rely on assumptions about pharmacologic or similar properties of the
treatments). The discussion above points to autocorrelation models as one method to handle
carryover, although they assume correlations over time unrelated to when treatment is
changed or introduced. One could, in principle, design an autocorrelation structure that varied
with time since introduction of treatment. But this would need to assume knowledge of the
nature of the carryover that might not be well supported.

A simple check for carryover when the analyst has a sufficient number of observations
taken over time within each treatment period is to compare results using all measurements and
after having discarded those at the beginning of the period that might be affected by carryover.
The model with more measurements should return more precise estimates but at the risk of

some bias from the carryover. If the estimates are similar, carryover is not likely to be an issue.
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Another from of carryover that one might be able to examine is the effect of treatment
sequence when the response is different depending on the order of the treatments given.
Treatment A may have a bigger effect if given after treatment B. This might manifest itself
through responses that are higher for treatment A when it follows B than when it follows
another period of A. One can examine a sequence effect by adding a variable that codes for
sequence, e.g. a dummy variable that equals one in periods where A follows B and zero
otherwise. Of course, if treatment effects are wearing off, it would not be appropriate to code

every measurement in the A period with the sequence effect.

Discrete Outcomes In each of the models presented, we have assumed a continuous outcome
with normally distributed measurement error. Many outcomes that might be used in N-of-1
trials, however, may use categorical scales, event counts or binary indicators of health status.
For example, Guyatt **and Larson * both used Likert scales with ratings from 1-7 to measure
patients outcomes. Models for such outcomes require different formulations that do not rely
on the assumption of normality.

Generally, one needs to formulate such models as generalized linear models **. Binary
outcomes use logistic regression; count outcomes use Poisson regression; and categorical
outcomes use categorical logistic regression. The generalized linear model has the same form as
the linear model on the right hand sides of the models above, but expresses the left-hand side
in terms of a (link) function of the mean of the probability distribution for the outcomes. For
example, with a binary outcome, events occur according to Bernoulli distribution and the mean

of that distribution is the probability of an event. The link function used in logistic regression is
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the logit function (logit (p) = loge(p/(1-p)). In Poisson regression, the link function is log. For
categorical regression, various link functions can be used depending on how one wants to
model the data. A common link function for an ordered outcome such as a preference scale is
the cumulative logit **.

Although the generalized linear models use different estimation algorithms and take
different functional forms, model construction does not differ conceptually in any fundamental
way from the normal linear models, so we will say no more about them here, but refer the

interested reader to the many textbooks that treat them*** .

Estimation The simplest approach to estimating the treatment effect uses the model that
ignores any potential effects of time, autocorrelation or carryover and simply compares the
average response when the patient is on each treatment. If the design is blocked, one can take
the difference between outcomes within each block and then simply average the differences
computing the appropriate standard error. This corresponds to a paired t-test. If no blocking is
used, the analysis is an unpaired t-test'.

In general, one can use likelihood or Bayesian methods that incorporate the necessary
correlation structures and interaction terms to fit the models. Likelihood-based methods
typically rely on large samples to validate their assumptions of normal distributions of the
resulting model estimates. Because the amount of data collected on any single outcome in an
N-of-1 study is small, such assumptions may not be appropriate.

Bayesian inference combines the likelihood with prior information to form a posterior

distribution of the likelihood that a model parameter takes a given value. The prior information
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is expressed through a probability distribution describing our degree of belief about model
parameters before observing the data. Bayesian inference is natural for clinicians making
decisions such as a differential diagnosis because it expresses the way that they combine new
information (such as a diagnostic test result) to update their previous beliefs *°. The use of prior
information also permits the analysis to incorporate patient preferences and beliefs.

Specification of a complete prior distribution for all model parameters can be difficult,
particularly for those like correlations or variance components about which not much may be
known. One common simplification assumes that very little is known about some or all of the
parameters and uses prior distributions that do not favor any values over others.
Probabilistically, this corresponds to a uniform (flat) distribution. Such priors are called
noninformative. Conversely, knowledge of certain parameters such as the expected treatment
effect may be available and so informative priors may be chosen. For example, for a pain scale
outcome the average amount of pain reduction that one can expect over a two-week course of
therapy may be approximately known in the population or one may be able to bound the
maximum amount. It is also possible to construct an approximate prior distribution by eliciting
some of its features, such as means or percentiles *’.

The posterior distribution, formed by calculating the conditional probability distribution
of each parameter given the observed data and the specified prior distribution, is essentially a
weighted average of the observed treatment effect mean and the hypothesized prior mean.
The weights are supplied by the relative information about the two expressed through the
precision with which each is known. One can use the posterior distribution to make statements

about the probability that the parameters take on different values. For instance, one might
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conclude that the chance that treatment A reduces pain more than treatment B as measured
on a specific pain scale is 75%; or, one might say that there is 50% chance that the reduction is
at least 10 points on the scale. Statements like this can be made for each outcome, allowing the
patient and clinician to weigh them and determine which treatment is working better. Bayesian
inference leads to statements about the probability of different hypothesis given the data
observed; non-Bayesian, or frequentist, inference leads to statements about the probability of

the data given the null hypothesis.

Local Knowledge and statistical methods The personalized nature of N-of-1 trials indicates that
the primary use for the knowledge produced in each individual trial is to inform clinical
decision-making for the specific patient, i.e., the knowledge produced is used locally or
internally within the patient-clinician team that produced this knowledge. This paradigm is
crucially different from the situation in the standard parallel group RCTs, in which the primary
use of the knowledge produced in an RCT is to inform clinical decision-making for future
patients, rather then for the patients participating in the RCT. In fact, for double blinded RCTs,
the patients and their clinicians do not know the treatment the patient actually received until
the RCT is unblinded. Given this fundamental difference between the two paradigms, the
appropriate statistical method also differs. While significance testing is the usual statistical
method for the standard parallel group RCTs, the same method might be less pertinent for N-
of-1 trials. Instead, one provides the decision maker with all the information required to make

the decision in a format that facilitates decision-making.
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Presentation of Results

In order to make a correct decision, it is important that the patient and clinician not only
have the right information, but that it be presented to them in a format easy to understand.
The results of a trial are complex. Data are collected on multiple outcomes at multiple times
under different treatment conditions. Many of the models we have discussed describe
complicated phenomena like autocorrelation that may confound facile interpretation of the
data. Good graphics can help explain the data and the results to both parties.

The simplest graph that should always accompany results plots each outcome over time
separately in the treatment and control groups. A variety of different approaches are possible.
One could overlay or stack two line plots, matching by block pairs. This reveals within-block
differences as well as time trends and potential autocorrelation. One could add the sequence
order by separately coloring within each block the first sequence in one color and the second in
another as in Figure 1. Displays of the raw data, like Figure 1, provide important information on
the relationship of outcomes to treatment. They may also be shown in a blinded fashion
(without identification of treatment group) to the patient during her trial as a form of patient
feedback to motivate adherence.

Determining treatment differences directly from such figures may, however, be
camouflaged by other features of the data like autocorrelation and time trends. Figure 1 shows
simulated data that appear to show that treatment B (dotted line) typically produces higher
outcomes than treatment A (solid line). Responses appear to be increasing with time on

treatment A, but not B, suggesting a potential treatment by block interaction. Because only one
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measurement is recorded on each treatment period, we cannot distinguish time effects from
effects by block. The overall effect of the picture is that B may be better than A, but that this
efficacy wears off over time. In fact, the data are simulated with a treatment difference and
with a trend over time, but no treatment by block interaction, which occurs by chance. The
right answer is that B is better than A and that all patient responses are increasing with time.
Therefore, the plot is somewhat misleading and may lead to the wrong decision. As a general
rule, unless treatment effects are large or specific, plots will provide necessary, but not
sufficient information to make appropriate decisions. It is therefore important to supplement
the graphs with appropriate statistical analysis and present the information in the clearest way
possible.

One should use the statistic provided by the modeling process that relates directly to
the measured treatment difference. In the Bayesian framework, this is the posterior
probability; in the non-Bayesian, or frequentist, framework, this is typically a p-value. We
recommend the Bayesian approach because it provides more value to the patient. The p-value
describes the likelihood of the data under a specific null hypothesis. For example, a p-value of
0.05 for a test of the null hypothesis of no difference in treatments means that if the two
treatments had the same effect, one would have observed the difference found 1 in 20 times
under repeated sampling. Putting aside the irrelevancy of the repeated sampling assumption
since the experiment will not be repeated, one is left with the observation that it is unlikely that
the treatments have the same effect. But one does not know the likelihood of any other effect.

Contrast this with the Bayesian interpretation, which gives the full posterior probability

distribution of the treatment effect under the model chosen. From this posterior distribution,
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one can make probabilistic statements about the likelihood of any size of treatment effect, for
example the likelihood that the treatment effect is at least 10, or between 5 and 15. In essence,
this approach focuses on estimation of the magnitude of the effect, rather than on hypothesis
testing.

This focus can be particularly informative when multiple outcomes are of interest to the
patient and one wants to balance different objectives. As an alternative to the use of the
composite scale discussed previously, one can formulate a joint posterior distribution to make
probabilistic statements about the joint probabilities attached to combinations of the outcomes
if one were prepared to make some assumptions about their relationships. As an example,
assume that the user (patient and her clinician) specified a performance target for the new
treatment, A, to improve pain by at least 10 percent and increase sleep by at least one hour per
night, compared to the current treatment, B. In the simple (and perhaps unrealistic case) that
the outcomes are independent, the probability for the joint outcome is the product of the
probabilities of each separate outcome. So, if the probability that A improved pain by 10
percent was 0.3 and the probability that A increased sleep by one hour was 0.2, then the
probability that both would happen would be 0.06.

Such probabilities can be expressed by a distribution function of the likelihood of each
gain or by a cumulative distribution. As an example, assume that the posterior distribution of
treatment benefit on A compared to B for outcome A expressed as a difference in percent
change from baseline was normally distributed with mean 10 percent and standard deviation 5
percent. Therefore, there is roughly a 97.5 percent probability that A has bigger benefit than B

since 0 change is about 2 standard deviations below the mean. Likewise, assume the benefit for
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the second outcome is smaller but more uncertain, normally distributed with mean 5 and
standard deviation 10. Figure 2 (top row) plots the resulting posterior probability distributions
of treatment effect for each outcome together. One might also be interested in their
cumulative distributions, or more likely, the probability of observing an improvement at least as
big as a certain size. These graphs appear in the middle row of the Figure. Using the dotted lines
on the graph, we can see that the probability of at least a 10 percent improvement is slightly
higher with outcome 1 than with outcome 2 since its mean is higher, but that the situation
reverses for the probability of at least a 20 percent improvement because of the greater
uncertainty associated with outcome 2. The bottom row of the figure gives the probability that
both outcomes are improved by a given amount. This probability is smaller than for either
outcome alone and for this example is roughly the product of the two individual probabilities
because the two outcomes were simulated independently. In practice, these joint probabilities
may be quite similar to or quite different from their components depending upon the
correlation between the outcomes.

While plots like those in Figure 2 display the entire distribution of effect sizes together
with our uncertainty in estimating them, some may prefer a simpler display with less total
information, but perhaps in an easier to understand format. The distributions in the top row of
the figure may be collapsed into a median and a central interval displaying the values most
likely to occur with a given amount of probability, often 95 percent. One may also choose one
or more amounts of improvement for which to display probabilities. Figure 3 displays the
median and 95% central interval (from 2.5 to 97.5 percentile) for the treatment effect for each

outcome. The associated probabilities associated with improvement of at least 0, 5, 10, 15 and
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20 percent for each outcome and both outcomes together can be displayed as in Table 1. The
users should be able to specify the exact outcome levels for which they want probabilities
computed. These may correspond, for instance, to clinically relevant values as determined by
the patient and her clinician in collaboration.

Some users may prefer to consider results as odds, rather than probabilities. Others may
prefer different metrics rather than treatment effects. A flexible environment in which the user
can request results in different ways that are most comfortable and personally informative is a

desired feature of any N-of-1 analytic module.

Combining N-of-1 Studies

Although N-of-1 studies are designed for single patients working with a single clinician
to make a single treatment decision, many N-of-1 studies may be similar enough to inform
others. Furthermore, the small number of crossovers used in many N-of-1 studies may increase
the need to combine the index patient’s own data with data obtained from other patients who
participated in similar N-of-1 trials to increase the statistical precision available for making
decisions about individual patients.

Such similarity may arise from the same clinician testing the same treatments with
different patients having the same condition; similar patients testing the same treatments with
different clinicians; clinicians within the same clinic practicing in similar ways; examining a
common set of treatments in different combinations. In each case, we may think of the set of
N-of-1 studies as forming a meta-analysis and attempt to combine them using techniques from

meta-analysis such as multi-level random effects models, regression and networks. As an added
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bonus, combining the results can help estimate the average treatment effect in the population
as well as the individual treatment effects for single patients. We give a brief introduction here,
but refer the interested reader to related treatments in Zucker *® and Duan, Kravitz and
Schmid™.

To extend the previous models to multiple patients with N-of-1 studies consider

Model 1a: y, ., =, +7,+ N+ B, + ei(j(k(m)))

where m indexes the patient, ¢, ~ N(O,G;) is the random effect for the patient and the error

term indicates the variability within observations taken within a treatment period within a

block within a patient. The time trend model

Model 3a: y, =0, + Pt +yX, +€,

changes only by having a random intercept o, ~ N(0,0';) for patient. These models may be

easily extended to encompass interactions between patient and other factors that would

indicate variation across patients. In particular, patient characteristics may be able to explain
some of the between-patient variance o, .
If we assume all within block measurements are exchangeable, i.e., that all block-

specific treatment effect estimates are similar and can be considered replicates of each other,

we can combine results across patients quite simply. First, estimate the treatment effect for
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patient i within block b as the difference in the outcomes between treatment 1 and treatment

0, D, =Y, —Y,, . The block-specific treatment effect estimates can then be aggregated across

B;
blocks to form the individual treatment effect (ITE) estimate D, = ZDib / B; . Itis possible to
b=1

extend this approach into a regression estimate under the broader assumption that allows

observed differences across blocks, such as a period effect. The observed individual treatment

effects (ITE) D, are unbiased for the true ITE d;, so that D, ~ N(Si,sf) . The within-patient

variance sl.2 is assumed known and allowed to be specific to each patient (as in a meta-analysis
treating the patient as a study). This permits capture of variation in design or implementation of
the studies, such as the variation in the number of blocks across patients. For instance, one

could assume S’ =0’/ B, equals the common within-block variance ¢ scaled by the number
of blocks. If the full model 1 is used, then s’ is estimated from the within-block measurements.

The true ITEs are assumed drawn from a random effects distribution, &, ~ N(,,7°),
where 8 denotes the overall mean treatment effect for the population, and t denotes
between-patient variance in the individual mean treatment effects. Prior distributions are
placed on the parameters o, t°, and ¢ to represent what is known about these parameters
prior to the study. The overall mean treatment effect ¢ and the individual mean treatment
effects §;’s are estimated using the posterior distribution for each parameter.

The posterior distribution of the patient’s ITE, ;, provides an opportunity to obtain a
more informative estimate of the ITE than is available in a single N-of-1 trial because of the
opportunity to borrow strength from the population mean d,. Recall that the posterior mean is
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an average of the sample mean and the prior mean. In this situation, the prior mean 9q is the
external information coming from other patients and 5,. is the information coming from the

patient. If the patient is like the others, her posterior will be located close to the average
The relationship between individual treatment effect, d;, and overall treatment effect,

do, depends on the balance between the between-patient variance, T, and the within-patient

2 20

variance, s; . When between-patient variance is small compared to within-patient variance

(i.e., little or no heterogeneity of treatment effects), the patient-specific mean treatment

effects, 0;, are very similar and close to the posterior mean effect, §q. Alternatively, if between-

patient variance is large compared to within-patient variance (i.e. strong heterogeneity of

treatment effects), the d; would be estimated to be close to the patient-specific treatment
effect estimate, 5,. , with little or no “borrowing from strength.” In a sense, the “strength”

(population information) to be borrowed does not provide strong statistical information,
therefore within-patient information dominates between-patient information.

The model for multiple patients may be extended by considering the model as
comprising two parts, within-patient and between-patient. The models for the single N-of-1
trial describe the within-patient parts. The between-patient parts describe factors that vary
among patients as in any statistical model with patient units. These include patient
characteristics such as co-morbidity, demographics and socioeconomic status. They may also
include study and healthcare structure such as the nesting of patients nested within providers
and providers within organizations. Each level in the nested structure is represented by a
random effect, in addition to the patient level random effect ;. For example, the model that

accommodates a nested structure with patients nested within practices will have a random
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effect for practices in addition to a random effect for patients: 5[][ ~ N(Qp,rf,) with
0p ~ N(Oo,wz) where 6, denotes the individual mean treatment effect for the ith patient in the

p-th practice, 6, denotes the mean treatment effect among patients in the pth practice, 1'12,

denotes the within-practice variance among patients in the pth practice, 6, denotes the overall

mean treatment effect across practices, and w’ denotes the variance across practices. Again,
covariates at the practice level can also be incorporated into the model to evaluate the HTE
associated with these covariates.

In addition to better estimates of a patient’s ITE from borrowing strength from other
studies, one also obtains an estimate of the overall treatment effect across patients either as
single mean or as a regression. These population effects can be used to inform treatment
decisions for similar patients who did not participate in N-of-1 trials.

Finally, when N-of-1 trials with different treatment comparisons are combined across
patients, it is possible to consider a network meta-analysis of the N-of-1 trials. Models for

2122 incorporate all the pairwise comparisons into a single model for

network meta-analysis
simultaneous estimation. Under assumptions of consistency23 and similarity21'24 , direct
comparisons of treatments A and B, treatments A and C and treatments B and C may be
combined so as to incorporate both their direct estimates and indirect estimates (AC is
estimated indirectly through the sum of AB and BC). Such models make optimal use of all the
treatment data, leading to more precision in effect estimates as well as the ability to rank

treatments. These models hold even when studies do not compare all treatments, but only a

subset. For example, a study comparing A and B may be combined with one comparing B and C
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to get an indirect estimate of A and C. Studies with more than two arms also fit into the model
structure. In fact, they provide additional information because their direct and indirect

estimates obtained from the same study must be consistent.

5.4 Conclusion

N-of-1 data offer rich possibilities for statistical analysis of individual treatment effects.
The more data that are available both within and across patients, the more flexibility models
have. This richness does come at the price of the need for careful model exploration and
checking. Many errors can be avoided with good study design that respects standard
experimental principles and minimizes the risk of complexity caused by autocorrelation as by
including washout periods to minimize carryover. Such design and modeling expertise is
probably not within the realm of the average clinician and patient undertaking an N-of-1 study.
Thus, it is crucial that standard protocols and analyses be available, especially in an automated

and computerized format that promotes ease of use and robust designs and models.
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Checklist

Guidance Key Considerations Check

Treatment assignment needs
to be balanced across
treatment conditions, using
either randomization or
counterbalancing, along with
blocking

Design needs to eliminate or mitigate
potential confounding effects such as a
time trend

Pros and cons of randomization versus
counterbalancing need to be
considered carefully and selected
appropriately. Counterbalancing is
more effective if there is good
information on critical confounding
effect, e.g., linear time trend.
Randomization is more robust against
unknown sources of confounding.
Blocking helps mitigate potential
confounding with time trend,
especially when early termination
OCCUrs.

L]

Blinding of treatment
assignment

Blinding of patients and clinicians, to
the extent feasible, is particularly
important for N-of-1 trials, especially
with self-reported outcomes, when it is
deemed necessary to eliminate or
mitigate non-specific effects ancillary
to treatment

Some non-specific effects might
continue beyond the end of trial within
the individual patient, therefore should
be considered part of the treatment
effect instead of a source of
confounding

Invoke appropriate measures
to deal with potential bias due
to carryover and slow onset
effects

A washout period is commonly used to
mitigate carryover effect

Adverse interaction among treatments
being compared indicates the need for
a washout period

Absence of active treatment during a
washout period might pose an ethical
dilemma and diminish user acceptance
for active control trials

Washout does not deal with slow onset
of new treatment and might actually
extend the duration of transition
between treatment conditions
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Analytic methods can be useful for
dealing with carryover and slow onset
effects when repeated assessments are
available within treatment periods

Replication of assessments
within treatment periods

Repeated assessments within
treatment periods can enhance
statistical information (precision of
estimated treatment effect) and
facilitate statistical approaches to
address carryover and slow onset
effects

The costs and respondent burden need
to be taken into consideration in
decisions regarding frequency of
assessments

Use of adaptive trial design
and sequential stopping rule

Adaptive trial designs and sequential
stopping rules can help improve trial
efficiency and reduce patients’
exposure to the inferior treatment
condition

Use of appropriate statistical
method to analyze outcome
data, taking into consideration
important features of time
series data, including
autocorrelation, time trend,
and repeated measures within
treatment periods

Mixed effect models, autoregressive
models, and dynamic models can be
used to analyze time series data from
N-of-1 trials

Nonparametric tests are easy to use
but might not fully capture time series
features

Significance testing is less pertinent for
N-of-1 trials than the provision of the
information needed for the users to
make decisions for future treatments

Use of appropriate methods to
handle multiple outcomes

Separate analyses and reporting of trial
findings for multiple outcomes can
accommodate the patient-centered
nature of N-of-1 trials

Explicit pre-specification of weights
across outcomes is preferable to post
hoc weighting

A composite index or scale can
effectively synthesize information
across related outcomes and reduce
the burden on users to digest trial
results across multiple outcomes

Presentation of results of
statistical analysis in an

Need to customize format of
presentation to needs and preferences
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informative and user-friendly
manner

for individual users

Graphical presentation of trial results
is easy to comprehend but might be
complicated by autocorrelation, time
trend, etc.

Posterior probabilities or odds based
on a Bayesian framework is more
interpretable for users than p-values
based on a frequentist framework

Borrow from strength

Bayesian methods can be used to
combine data across individuals
participating in similar N-of-1 trials, to
provide more precise estimates for
individual treatment effects, and also
to provide estimates for average
treatment effects in the population to
inform treatment decisions for patients
not in the trials

Network meta-analysis can be used to
incorporate information from patients
whose trials are related to but not
identical in design to the treatment
conditions compared
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Table 1. Probability that given outcome or two outcomes together have a treatment effect
greater than a given amount

Outcome
1 2 1land2
Probability > 0 097 0.69 0.67
Probability > 5 0.86 0.50 0.43
Probability>10 0.51 0.31 0.17
Probability>15 0.17 0.16 0.02
Probability>20 0.02 0.07 0.00

Source: http://www.effectivehealthcare.ahrqg.gov/index.cfm
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Figures

Figure 1. Data from simulated N-of-1 trial. Two line plots (solid and dotted) show
outcomes for two treatments measured within each of 6 blocks. Patients receive each
treatment in each block with the point labeled in red taken first.
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Figure 2. Top row: Posterior distributions in percent improvement (treatment effect) for
two outcomes; Middle row: Probability that outcome improves by at least amount on
horizontal axis for each outcome; Bottom row: Probability that both outcomes improve by at
least amount on horizontal axis.
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Figure 3. Posterior median and 95% central posterior density interval for two outcomes.
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